520 research outputs found

    Methodological criteria for the assessment of moderators in systematic reviews of randomised controlled trials : a consensus study

    Get PDF
    Background: Current methodological guidelines provide advice about the assessment of sub-group analysis within RCTs, but do not specify explicit criteria for assessment. Our objective was to provide researchers with a set of criteria that will facilitate the grading of evidence for moderators, in systematic reviews. Method: We developed a set of criteria from methodological manuscripts (n = 18) using snowballing technique, and electronic database searches. Criteria were reviewed by an international Delphi panel (n = 21), comprising authors who have published methodological papers in this area, and researchers who have been active in the study of sub-group analysis in RCTs. We used the Research ANd Development/University of California Los Angeles appropriateness method to assess consensus on the quantitative data. Free responses were coded for consensus and disagreement. In a subsequent round additional criteria were extracted from the Cochrane Reviewers’ Handbook, and the process was repeated. Results: The recommendations are that meta-analysts report both confirmatory and exploratory findings for subgroups analysis. Confirmatory findings must only come from studies in which a specific theory/evidence based apriori statement is made. Exploratory findings may be used to inform future/subsequent trials. However, for inclusion in the meta-analysis of moderators, the following additional criteria should be applied to each study: Baseline factors should be measured prior to randomisation, measurement of baseline factors should be of adequate reliability and validity, and a specific test of the interaction between baseline factors and interventions must be presented. Conclusions: There is consensus from a group of 21 international experts that methodological criteria to assess moderators within systematic reviews of RCTs is both timely and necessary. The consensus from the experts resulted in five criteria divided into two groups when synthesising evidence: confirmatory findings to support hypotheses about moderators and exploratory findings to inform future research. These recommendations are discussed in reference to previous recommendations for evaluating and reporting moderator studies

    Do red deer stags (Cervus elaphus) use roar fundamental frequency (F0) to assess rivals?

    Get PDF
    It is well established that in humans, male voices are disproportionately lower pitched than female voices, and recent studies suggest that this dimorphism in fundamental frequency (F0) results from both intrasexual (male competition) and intersexual (female mate choice) selection for lower pitched voices in men. However, comparative investigations indicate that sexual dimorphism in F0 is not universal in terrestrial mammals. In the highly polygynous and sexually dimorphic Scottish red deer Cervus elaphus scoticus, more successful males give sexually-selected calls (roars) with higher minimum F0s, suggesting that high, rather than low F0s advertise quality in this subspecies. While playback experiments demonstrated that oestrous females prefer higher pitched roars, the potential role of roar F0 in male competition remains untested. Here we examined the response of rutting red deer stags to playbacks of re-synthesized male roars with different median F0s. Our results show that stags’ responses (latencies and durations of attention, vocal and approach responses) were not affected by the F0 of the roar. This suggests that intrasexual selection is unlikely to strongly influence the evolution of roar F0 in Scottish red deer stags, and illustrates how the F0 of terrestrial mammal vocal sexual signals may be subject to different selection pressures across species. Further investigations on species characterized by different F0 profiles are needed to provide a comparative background for evolutionary interpretations of sex differences in mammalian vocalizations

    Multi-level evidence of an allelic hierarchy of USH2A variants in hearing, auditory processing and speech/language outcomes.

    Get PDF
    Language development builds upon a complex network of interacting subservient systems. It therefore follows that variations in, and subclinical disruptions of, these systems may have secondary effects on emergent language. In this paper, we consider the relationship between genetic variants, hearing, auditory processing and language development. We employ whole genome sequencing in a discovery family to target association and gene x environment interaction analyses in two large population cohorts; the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK10K. These investigations indicate that USH2A variants are associated with altered low-frequency sound perception which, in turn, increases the risk of developmental language disorder. We further show that Ush2a heterozygote mice have low-level hearing impairments, persistent higher-order acoustic processing deficits and altered vocalizations. These findings provide new insights into the complexity of genetic mechanisms serving language development and disorders and the relationships between developmental auditory and neural systems

    Body size and vocalization in primates and carnivores

    Get PDF
    A fundamental assumption in bioacoustics is that large animals tend to produce vocalizations with lower frequencies than small animals. This inverse relationship between body size and vocalization frequencies is widely considered to be foundational in animal communication, with prominent theories arguing that it played a critical role in the evolution of vocal communication, in both production and perception. A major shortcoming of these theories is that they lack a solid empirical foundation: rigorous comparisons between body size and vocalization frequencies remain scarce, particularly among mammals. We address this issue here in a study of body size and vocalization frequencies conducted across 91 mammalian species, covering most of the size range in the orders Primates (n = 50; ~0.11–120 Kg) and Carnivora (n = 41; ~0.14–250 Kg). We employed a novel procedure designed to capture spectral variability and standardize frequency measurement of vocalization data across species. The results unequivocally demonstrate strong inverse relationships between body size and vocalization frequencies in primates and carnivores, filling a long-standing gap in mammalian bioacoustics and providing an empirical foundation for theories on the adaptive function of call frequency in animal communication

    The evolution of acoustic size exaggeration in terrestrial mammals

    Get PDF
    Recent studies have revealed that some mammals possess adaptations that enable them to produce vocal signals with much lower fundamental frequency (F0) and formant frequency spacing (ΔF) than expected for their size. Although these adaptations are assumed to reflect selection pressures for males to lower frequency components and exaggerate body size in reproductive contexts, this hypothesis has not been tested across a broad range of species. Here we show that male terrestrial mammals produce vocal signals with lower ΔF (but not F0) than expected for their size in mating systems with greater sexual size dimorphism. We also reveal that males produce calls with higher than expected F0 and ΔF in species with increased sperm competition. This investigation confirms that sexual selection favours the use of ΔF as an acoustic size exaggerator, and supports the notion of an evolutionary trade-off between pre-copulatory signalling displays and sperm production

    Development of Social Vocalizations in Mice

    Get PDF
    Adult mice are highly vocal animals, with both males and females vocalizing in same sex and cross sex social encounters. Mouse pups are also highly vocal, producing isolation vocalizations when they are cold or removed from the nest. This study examined patterns in the development of pup isolation vocalizations, and compared these to adult vocalizations. In three litters of CBA/CaJ mice, we recorded isolation vocalizations at ages postnatal day 5 (p5), p7, p9, p11, and p13. Adult vocalizations were obtained in a variety of social situations. Altogether, 28,384 discrete vocal signals were recorded using high-frequency-sensitive equipment and analyzed for syllable type, spectral and temporal features, and the temporal sequencing within bouts. We found that pups produced all but one of the 11 syllable types recorded from adults. The proportions of syllable types changed developmentally, but even the youngest pups produced complex syllables with frequency-time variations. When all syllable types were pooled together for analysis, changes in the peak frequency or the duration of syllables were small, although significant, from p5 through p13. However, individual syllable types showed different, large patterns of change over development, requiring analysis of each syllable type separately. Most adult syllables were substantially lower in frequency and shorter in duration. As pups aged, the complexity of vocal bouts increased, with a greater tendency to switch between syllable types. Vocal bouts from older animals, p13 and adult, had significantly more sequential structure than those from younger mice. Overall, these results demonstrate substantial changes in social vocalizations with age. Future studies are required to identify whether these changes result from developmental processes affecting the vocal tract or control of vocalization, or from vocal learning. To provide a tool for further research, we developed a MATLAB program that generates bouts of vocalizations that correspond to mice of different ages

    Volitional exaggeration of body size through fundamental and formant frequency modulation in humans

    Get PDF
    Several mammalian species scale their voice fundamental frequency (F0) and formant frequencies in competitive and mating contexts, reducing vocal tract and laryngeal allometry thereby exaggerating apparent body size. Although humans’ rare capacity to volitionally modulate these same frequencies is thought to subserve articulated speech, the potential function of voice frequency modulation in human nonverbal communication remains largely unexplored. Here, the voices of 167 men and women from Canada, Cuba, and Poland were recorded in a baseline condition and while volitionally imitating a physically small and large body size. Modulation of F0, formant spacing (∆F), and apparent vocal tract length (VTL) were measured using Praat. Our results indicate that men and women spontaneously and systemically increased VTL and decreased F0 to imitate a large body size, and reduced VTL and increased F0 to imitate small size. These voice modulations did not differ substantially across cultures, indicating potentially universal sound-size correspondences or anatomical and biomechanical constraints on voice modulation. In each culture, men generally modulated their voices (particularly formants) more than did women. This latter finding could help to explain sexual dimorphism in F0 and formants that is currently unaccounted for by sexual dimorphism in human vocal anatomy and body size

    Conversion events in gene clusters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene clusters containing multiple similar genomic regions in close proximity are of great interest for biomedical studies because of their associations with inherited diseases. However, such regions are difficult to analyze due to their structural complexity and their complicated evolutionary histories, reflecting a variety of large-scale mutational events. In particular, conversion events can mislead inferences about the relationships among these regions, as traced by traditional methods such as construction of phylogenetic trees or multi-species alignments.</p> <p>Results</p> <p>To correct the distorted information generated by such methods, we have developed an automated pipeline called CHAP (Cluster History Analysis Package) for detecting conversion events. We used this pipeline to analyze the conversion events that affected two well-studied gene clusters (α-globin and β-globin) and three gene clusters for which comparative sequence data were generated from seven primate species: CCL (chemokine ligand), IFN (interferon), and CYP2abf (part of cytochrome P450 family 2). CHAP is freely available at <url>http://www.bx.psu.edu/miller_lab</url>.</p> <p>Conclusions</p> <p>These studies reveal the value of characterizing conversion events in the context of studying gene clusters in complex genomes.</p

    Low Frequency Groans Indicate Larger and More Dominant Fallow Deer (Dama dama) Males

    Get PDF
    Background: Models of honest advertisement predict that sexually selected calls should signal male quality. In most vertebrates, high quality males have larger body sizes that determine higher social status and in turn higher reproductive success. Previous research has emphasised the importance of vocal tract resonances or formant frequencies of calls as cues to body size in mammals. However, the role of the acoustic features of vocalisations as cues to other quality-related phenotypic characteristics of callers has rarely been investigated. Methodology/Principal Findings: We examined whether the acoustic structure of fallow deer groans provides reliable information on the quality of the caller, by exploring the relationships between male quality (body size, dominance rank, and mating success) and the frequency components of calls (fundamental frequency, formant frequencies, and formant dispersion). We found that body size was not related to the fundamental frequency of groans, whereas larger males produced groans with lower formant frequencies and lower formant dispersion. Groans of high-ranking males were characterised by lower minimum fundamental frequencies and to a lesser extent, by lower formant dispersions. Dominance rank was the factor most strongly related to mating success, with higher-ranking males having higher mating success. The minimum fundamental frequency and the minimum formant dispersion were indirectly related to male mating success (through dominance rank). Conclusion/Significance: Our study is the first to show that sexually selected vocalisations can signal social dominance in mammals other than primates, and reveals that independent acoustic components encode accurate information on different phenotypic aspects of male quality

    Practicing a Musical Instrument in Childhood is Associated with Enhanced Verbal Ability and Nonverbal Reasoning

    Get PDF
    Background: In this study we investigated the association between instrumental music training in childhood and outcomes closely related to music training as well as those more distantly related. Methodology/Principal Findings: Children who received at least three years (M = 4.6 years) of instrumental music training outperformed their control counterparts on two outcomes closely related to music (auditory discrimination abilities and fine motor skills) and on two outcomes distantly related to music (vocabulary and nonverbal reasoning skills). Duration of training also predicted these outcomes. Contrary to previous research, instrumental music training was not associated with heightened spatial skills, phonemic awareness, or mathematical abilities. Conclusions/Significance: While these results are correlational only, the strong predictive effect of training duration suggests that instrumental music training may enhance auditory discrimination, fine motor skills, vocabulary, and nonverba
    corecore